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Abstract. The concept of fuzzy phase space Ts, recently introduced in non-relativistic 
quantum mechanics, is extended to the relativistic case. The L2(r,) representation of the 
wave packet is used as a basis for discussing localizability in Ts for non-zero mass particles as 
well as for the photon. 

1. Introduction 

It has been recently shown (PrugoveEki 1976a) that if probability theory is generalized 
so as to deal with sample points which are ‘fuzzy’ rather than ‘sharp’, a consistent theory 
of measurement on fuzzy phase space f can be formulated in non-relativistic quantum 
mechanics; moreover time-dependent scattering theory in f is in complete agreement 
with conventional scattering theory in the realm of validity of the latter, while at the 
same time transcending some of its limitations (PrugoveEki 1976b). 

Quantum mechanics on fuzzy configuration space has also been considered (Ali and 
Doebner 1976), but although it provides a more realistic description of the actual 
position measurement process, it was found not to possess fundamentally new features 
which are not shared by its standard counterpart. In contradistinction, quantum 
mechanics in fuzzy phase space displays very definite information-theoretical advan- 
tages on account of the fact that, in the spinless case, position together with momentum 
constitute an informationally complete set of observables (PrugoveEki 1976~).  

Operationally, the concept of fuzzy phase space is based on the observation that the 
accuracy calibration of instruments used in the simultaneous determinative (PrugoveEki 
1967, 1973) measurement of position and momentum provides for each point (4, p )  in 
phase space r a confidence function xSI. If it were not for the uncertainty principle, one 
could postulate the existence of an ideal limit, namely that of a perfectly accurate 
instrument, whose confidence function at each point in r would be a S function centred 
at that point. For actual instruments, however, the accuracy calibrations comply with 
the uncertainty relations, and we can postulate only the existence of the limiting case of 
optimally accurate instruments whose confidence functions are Gaussians which have 
standard deviations obeying those relations. Thus, if the calibrations are invariant 
under translations and rotations of the laboratory inertial frame of reference, then the 
resulting fuzzy phase spaces for a single particle are (taking h = 1): 

r, = {(q, xt)) X (P, xt-’)) /q ,  P E $1, (1.1) 

(1.2) 
2 -3/2 xF’(u) = (m exp[-o-’(u - v12]. 

t Supported in part by the National Research Council of Canada. 
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We refer to CJ as the spread of the confidence function x?. Thus, we see that we are 
dealing with an entire spectrum 0 < s < co of fuzzy phase spaces Ts ; the limiting cases 
s = 0 and s = 00 can be identified with configuration and momentum space, respectively 
(PrugoveEki 1976b). 

The probability measures on r, associated (PrugoveEki 1976a) with r, measure- 
ments on a spinless non-relativistic particle of mass m > O  in the state + can be 
expressed in terms of the probability density 

where w+ is the Wigner transform of 4: 

w&, k)  = ( 2 ~ ) ~ ~  +*(k f’ 2u)  exp(-ix. u)+(k -;U) du. 
E? 

(1.3) 

(1.4) 

In the relativistic case, however, the position observables are represented by the 
Newton-Wigner operators (Newton and Wigner 1949) 

1 ik 
2 k 2  -+ m2’ Q = i V k - -  (1.5) 

Consequently, the marginality conditions which all probability densities in rs have to 
satisfy (PrugoveEki 1976a, P 5 )  impose on relativistic quantum mechanics a probability 
density r:) that is different from pg’. This density is discussed in P 2. 

Mass zero particles, such as the photon, have no non-relativistic counterpart. Hence 
in their case the concept of fuzzy phase space has to be re-examined in light of the 
limitations on the operational meaning that can be given to simultaneous measurement 
of their position and momentum. In § 3 we discuss and introduce the concept of 
localizability of the photon in fuzzy phase space r,, and discuss its relationship to front 
localizability (Acharya and Sudarshan 1960) and to localizability in momentum space. 

2. Localizability of non-zero mass particles in r, 
We shall treat in detail only fuzzy phase space for the Klein-Gordon particle since this 
case displays all the essential features of the general case. At the end of this section we 
indicate how this discussion extends to particles with non-zero spin. 

As in the non-relativistic case, we adopt as basic the fuzzy phase spaces r, in ( l . l ) ,  
with 0 < s < 00. We note, however, that while in the context of non-relativistic physics 
the optimal confidence functions (1.2) were invariant under the fundamental group of 
space-time transformations, namely the Galilean group, that is not the case relativisti- 
cally with respect to the corresponding PoincarC group. Indeed, (1.2) is left invariant by 
translations and rotations, but not by pure Lorentz transformations. Thus, the confi- 
dence functions in (1.2) can be considered to be outcomes of accuracy calibrations of 
instruments whose recording parts are at rest in the laboratory frame of reference, but 
they change (in an obvious manner) when those instruments are set in motion in relation 
to that frame. 

To arrive at the counterpart of (1.3) for a Klein-Gordon particle, we rewrite (1.3) in 
the form 

P:)(q, p ;  s) = l+(q, p ;  412, (2.1) 
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by using the L2(r,) representation (PrugoveEki 1976b), 
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+(q, p ;  s) = W~/~(+:;I+), (2.2) 

(2.3) +:;(k) = (r - 1  s 2 314 exp[-ls2(k -p)’-i(k -+p)q] ,  

of the state vector + E L2(W3); the inner product in (2.2) corresponds to the momentum 
representation: 

For a Klein-Gordon particle of rest mass m the momentum representation space is 
L:(R3), where 

dp (k) = k;’ dk, ko=(k2+m2)1’2,  (2.5) 

and the inner product of two state vectors ‘P1 and ‘ 4 f 2  is therefore 

(*il*z) = J * ~ ( k ) * z ( k )  d p  ( k ) .  (2.6) 
R3 

Furthermore, in the relativistic case Q is given by ( l S ) ,  and P by 

P’4f(k) = k*(k) ,  (2.7) 

but these operators satisfy the same canonical commutation relation as their non- 
relativistic counterparts Q’, P’: 

(Q’+M)  = iV,+(k), (P’+)(k)  = W k ) .  (2.8) 

Hence, by von Neumann’s theorem (von Neumann 1931), there is a unitary operator U 
mapping L2(R3) into L: (R3) such that 

Q = UQ’U-l, P= UP‘U-l. (2.9) 

(U+) (k )  = (k2+m2)”“(k) .  (2.10) 

D ( q , p ; s ) =  U m , p ; s ) U - ’ ,  (2.11) 

A simple computation shows that 

Thus, the spectral density D for (Q, P) can be generated by means of U :  

from the spectral density for (Q’,  PI), 

F ( ~ ,  p ;  s) = (2r)-3~+:;)(+:;~, (2.12) 

whose expectation value equals (2.1). Therefore, the probability density for finding a 
Klein-Gordon particle which is in the state 9 at the fuzzy point (4, xt’) x (p, $I ) )  is 

(2.13) r g ~ q ,  p )  = (*lD(q, p ;  SI*) = (2r)-3~(+:;~ u-l*)12 

and in analogy with (2.12) we have 

mq, p ;  s) = (2r r ) -3 i2~~+:~)(~+:~~.  (2.14) 
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We conclude that the L2(rs) space for a Klein-Gordon particle consists of all the 
functions 

wq,p; s) = (272)-3/2(~#:;t~) 

(2.15) 

corresponding to all W ( k )  E L;(R3). As expected, the above expression is not explicitly 
covariant since neither (1.2) nor (1.5) are. 

In view of (2.1 l ) ,  it follows right away that the expectation value (2.13) of D satisfies 
the marginality conditions 

= (472 3 s -2 ) - 3 j 4  J W ( k )  exp[-&s*(k -p)’+i(k - b ) q ] k 0 1 / 2  dk, 

(2.16) 

(2.17) 

+(x) = ( ~ T ) - ~ ” J  exp(ix. k)W(k)k;’” dk (2.18) 

on the fuzzy configuration space R: = ((4, x:))lq E R’}. This is so by virtue of the fact 
that F satisfies similar conditions (PrugoveEki 1976a, b). In this context we note that 
@(x) is indeed the configuration representation of 9, which corresponds to the position 
operators ( l S ) ,  i.e., 

(2.19) 

This fact can be verified by means of equation (10) in the original paper by Newton and 
Wigner (1949). Furthermore, one can easily check by explicit computation that, just as 
in the non-relativistic case (cf equation (2.14) of PrugoveEki 1976b), we have, 

(2.21) 

Thus, apart from respective normalization factors, the probability densities in r, 
become probability densities in momentum space and in configuration space in the limit 
s + + 00 and s + + 0, respectively. 

The generalizations of the above results to the case of arbitrary spin are very 
straightforward if one uses the spinor approach advocated by Weidlich and Mitra 
(1963). When that is done, the inner product (2.6) generalizes to the inner product in 
their equation (1.30), and the role of the inverse U-’ of the operator (2.10) (effecting 
the transition to the corresponding non-relativistic case) is assumed by 

u-l{#(l)(k) x . . . x p ( k ) }  

= m n / 2 ( k 2 +  m 2 ) - ( n + 1 ) / 2  { ( F W p ) ( k )  x . . . x (Fw4”))(&)} 

where Fw denotes the Foldy-Wouthuysen transformation. 

(2.22) 
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3. Fuzy localizab&ty of the photon 

It had been observed already by Newton and Wigner (1949) that the problem of 
localizability of mass zero particles of spin 0 or $ could be dealt with in essentially 
the same manner as for m # 0 case, but that difficulties arose when the spin was 
greater than 4. This fact gave rise to a whole series of papers discussing the spatial 
localizability of the photon (cf Amrein 1969 for a review), or attempting to provide a 
solution by discarding some of the restrictions imposed on position-coordinate observa- 
bles, such as their commutability (Pryce 1948, Acharya and Sudarshan 1960) or the 
u-additivity of their spectral measures (Jauch and Piron 1967). Therefore, in discussing 
the case of mass zero particles, we concentrate exclusively on the photon. 

We start with the undisputed fact that the photon can be localized in momentum 
space. Working in the gauge 

kf (k ) E 0, (3.1) 
we can regard the Hilbert space 9 of all one-photon states as consisting of all 
vector-valued functions f ( k )  (with complex-valued components) which satisfy (3 .l) and 
have a finite norm with respect to the inner product 

(3.2) 

We shall study first the ‘front’ localizability of the photon. This presupposes an 
absolutely sharp measurement of the direction of motion Sz = k/ko of the photon. Thus 
we introduce the functions 

fn(k) =f(k) ,  - m < k < + m ,  k = k o =  lkl, (3.3) 
which at fixed SZ can be considered to be the components of f(k) in the Hilbert space gn 
with inner product 

+oo 

( f lg)n=[ f” n(k)gn(k)ko dk 
-03 

corresponding to the direct integral decomposition 
63 

9=1 sndSZ. 

(3.4) 

(3.5) 

We note that since k in (3.3) varies over the entire real line, the integration in Sz is over a 
unit hemisphere (say over OS 8 < T, 0 s 4 < T if SZ is described by the spherical 
coordinates 8 and 

Consider now the possibility that instead of a sharp determination of the (oriented) 
magnitude p of the momentum p =pa at given S Z ,  we have a fuzzy determination, 
described by the fuzzy point (p, x:;’)): 

and dSz = sin 6 d8 dd). 

xE;’ ) (k)  = ( T - ~ s ~ ) ” ~  exp[-s’(k -p) ’ ] .  (3.6) 
It is completely consistent with the uncertainty relations to assume that a simultaneous 
fuzzy determination of the position coordinate x in the direction SZ can be carried out 
with an accuracy described by the confidence function x$h(x).  Hence, given f,(k) E 
sa, the probability density for measuring the fuzzy point 
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is obtained by using the expression for this same probability density in the Hilbert space 
L2(rW1)OL2(1w')OL2(rW'), and then making the transition to Sa by means of the unitary 
transformation 

( U O W k )  = k o - ' / 2 w ) .  (3.8) 

Thus, if we apply the method of P 2 to the present (one-dimensional) case, we obtain 

for that probability. 
It is easy to see that 

(3.11) 

is the correct probability density for detecting a photon moving in the given direction 
and having momentum of magnitude p .  In fact, the mean value of p in the entire 
momentum space, i.e., the expectation value of P, can be expressed in terms of (3.11): 

On the other hand, 

(3.13) 

A straightforward computation establishes the mean values over the entire configura- 
tion space 58 of q = 4 with respect to the probability density (3.13) to  be 

=$ V*(ia .  vk)f-f(ifi. vk)f*]ki' dk (3.14) 

= cfl$(v,. @ + @ e  vk)f). 

This equals the expectation value of the 'front' position operator Q' introduced in the 
equations (25) and (31) of Acharya and Sudarshan (1960). 

We note that both fi  and 0' leave each Hilbert space .Fa in the decomposition (3.5) 
invariant, inducing there the respective operators Pa and Qn, which are canonically 
conjugate. It is easy to check that (3.9) is actually the probability density of measuring 
the fuzzy point (3.7) for the simultaneous values of Qn and Pa, and that it satisfies the 
usual marginality conditions with respect to fuzzy measurements of both On and Pa. 

We turn now our attention to the more general case when there exists some 
fuzziness in the determination of the direction of motion a. 

Let X denote the Hilbert space with inner product (3.2) which consists of all 
functionsf(k) of finite norm with respect to that inner product. The Hilbert space 9 of 
the photon is a closed subspace of X. Let P denote the orthogonal projector of 2 onto 
9. We define for g E X 

(Ug)(k) = kA''g(k) (3.15) 
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(3.16) 

as being the spectral density in I', for the photon, where the projector I * - ) ( 
be applied to each component of the photon wave packet in accordance to (3.2). Thus 

1 has to 

r:"'(q, P) = (2+31(~dJ:;lf)lz (3.17) 

is taken to be the probability density of detecting a photon in the state f at the fuzzy 
point (q, xt') x (P, 

In addition to the fact that (3.17) is in keeping with (2.13), there are two other points 
that speak in its favour. 

The first one is that (3.17) has the correct marginal distribution on the fuzzy 
momentum space ~ 5 - 1 :  

E r,. 

(3.18) 

The second point is that for photons that move in a given direction R, and whose state 
therefore is 

f(k') =f(k)ki'S(R- a'), Q'= k'/kb, (3.19) 

(3.17) provides a result which is consistent with the probability density (3.9) for front 
fuzzy localizability in position and momentum. As a matter of fact, if we introduce the 
variables 

(3.20) kli = k . R, k, = k -R(k.  0) 

we easily compute that for f in (3.19) we have 

(3.21) 
i 

x ( 4 ~ r ~ s - ~ ) - ' / ~ )  [ exp[-$s2(k -pj$+i(k - p @  .q)]fsl(k)k'/2 dkl . 

Comparison with (3.9) shows that the only difference lies in the presence of the term in 
square brackets, which does not contain f and is exclusively p,-dependent-its source 
being the fuzziness in the determination of by the imperfectly accurate measurement 
device. 

The marginal distribution in (4, x:') of an arbitrary state f is, 

(3.22) 

d(x) = ( 2 . ~ ) ~ ~ ' ~  [ exp(ir. k)f(k)kO'/' dk. (3.23) 

Thus, the adoption of (3.17) as a probability density in fuzzy phase space implies that 
(3.22) is the photon probability density in fuzzy configuration space IT$. 

We note that this probability density has a well defined limit as s + + 0, namely 
@(x)I2. It is therefore tempting to adopt A(,) as the configuration space representa- 
tion of the one-photon state f(k). However, the corresponding spectral measure 

(E(A)&(x) = xa(4A (x) (3.24) 
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in %’ does not leave 9 invariant. Actually, it is seen from (3.16) that the spectral 
measure corresponding to sharp measurements would have to be PE(A)P. But the 
operators PE(A)P, although positive-definite, are not projection operators, i.e., they do 
not arise from sharply localized states in the sense of Newton and Wigner (1949). 

This last fact can be reconciled with the adoption of (3.22) as a probability density on 
fuzzy configuration space R: either by acknowledging only that the photon is local- 
izable in a fuzzy sense, without inferring from this that it is localizable in a sharp sense, 
or  by relaxing the requirement that systems of imprimitivity related to sharp localizabil- 
ity should be given in terms of projector-valued measures to the weaker demand of 
POV-measures. The first point of view is in keeping with that recently advocated by Ali 
and Emch (1974), except that our analysis leads to a different spectral measure on fuzzy 
configuration space, namely to the marginal value on R: 

P I, X W  d E 3 ,  A c R3, (3.25) 

of the spectral measure on r, whose spectral density is (3.16). The second point of view 
leads to TA=PE(A)P (with E(A) defined by (3.24)) as being the POV-measure for 
sharply localized photons-a suggestion that has been put forward by Kraus (1971). 

4. Conclusion 

In summary, we can state that for non-zero mass particles the concept of fuzzy phase 
space T,9 plays the same role in relativistic as in non-relativistic quantum mechanics, 
namely it leads to L2(r,) representation spaces for 0 < s < CO which are ‘sandwiched’ in 
between the configuration and momentum representations, with these last two being a 
kind of degenerate extreme. 

For mass zero particles, like the photon, there is no general consensus as to what the 
configuration space representation of the wave packet is, and the argument involving 
the limit s -* + 0 cannot be used in the same manner. However, the limit s + + 00 does 
lead to the accepted momentum representation. Moreover, for photons moving in a 
given direction a, the proposed probability density in rs is consistent with the photon 
front localizability proposed by Acharya and Sudarshan (1960). 

The fact that a concept of sharp front localizability of the photon can be introduced 
without difficulty while that of sharp ordinary localizability is unfeasible, indicates that 
the notion of direction of motion is intrinsic to the very concept of what a photon is, 
namely that it is an object moving in a specific direction. Indeed, if that is the case, by 
the uncertainty principle perfectly sharp localizability in configuration space is impos- 
sible since it would imply a total lack of information on the direction of motion. On the 
other hand, fuzzy phase space with its non-sharp information on momentum (and 
therefore also on direction of motion) does allow a corresponding non-sharp knowledge 
of position, and seems to be the most natural vehicle in the study of the question of 
localizability of the photon. 
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